Hyundai Equus Manuals

Hyundai Azera: Description and Operation - Button Engine Start System - Body Electrical System - Hyundai Azera 2011-2024 Service ManualHyundai Azera: Description and Operation

Description
System Overview
The System offers the following features:
-
Human machine interface through a 1-stage button, for terminal switching and engine start.
-
Control of external relays for ACC / IGN1 / IGN2 terminal switching and STARTER, without use of mechanical ignition switch.
-
Steering column locking with an ESCL device; Monitoring of the vehicle status to insure safe activation of the ESCL.
-
Indication of vehicle status through LED or explicit messages on display.
-
Immobilizer function by LF transponder communication between fob and start/stop button.
-
Redundant architecture for high system dependability .
-
Interface with Low Speed CAN vehicle communication network.
-
Interface with LIN vehicle communication network depending on platform .
The RKE and SMART KEY functions are not considered part of this Button Engine Start system and are specified in separated system.
System Main Function
-
Steering column locking/unlocking with ESCL.
-
Switching of ACC / IGN1 / IGN2 terminals.
-
Control of the STARTER relay BAT line (high side) based on communication with EMS ECU.
-
Management of the Immobilizer function.
-
Management of BES warning function.
Button Engine Start System
The Button Start System allows the driver to operate the vehicle by simply pressing a button (called as SSB) instead of using a standard mechanical key. It also manages the locking and the unlocking of the steering column (called as ESCL)without any specific actions by the driver.
If the driver press the SSB while prerequisites on brakes, fob authentication and transmission status are satisfied, the BES System will proceed with the locking/unlocking of the steering column, the control of the terminal, and the cranking of the engine.
The driver can release the SSB as soon as this sequence initiated. After positive response from immobilizer interrogation, the system will activate the starter motor and communicate with the EMS to check the engine running status for starter release.
The driver will be able to stop the engine by a short push on the SSB if the vehicle is already in standstill. Emergency engine stop will be possible by a long press of the SSB or 3 consecutive presses in case the vehicle is in ENGINE RUNNING.
If the conditions for engine cranking are not satisfied while a push on the SSB is detected and a valid fob authenticated, the system will unlock the steering column and switch the terminals to IGN. Another push on the SSB will be necessary to start the engine.
In case of a vehicle equipped with SMART KEY system, fob authentication will not require any action from the driver. For limp home start or in case of vehicle without SMART KEY, the driver will have to push the start / stop button.

Control Ignition and engine ON/OFF by Sending signal to IPM.
Display status by LED Lamp ON/OFF. (Amber or Blue)
Indicator ON/OFF Condition At Ignition Key Off Condition
No.
Character lamp
Conditions
1
Indicator Lamp ON
Door open, Tail lamp ON, ACC, IG ON
2
Indicator Lamp 30sec ON > Lamp OFF
Door close, Tail lamp OFF, IG OFF
3
Indicator Lamp OFF
Remote LOCK, Passive LOCK
4
Rheostat at tail lamp ON (Illumination lamp)

Indicator ON/OFF Condition According To Ignition Key's Position
No.
Ignition conditions
Start Button LED status
1
IG OFF
LED OFF
2
IG ACC
Amber color LED ON
3
IG ON (Engine OFF)
Blue color LED ON
4
Cranking
Maintain LED status before cranking
5
Engine running
LED OFF

Wireless Communication
Electromagnetic waves are used to exchange information between the vehicle and the FOB. Two types of RKE Key can supplement the BES system:
-
Non-smart key RKE
-
SMART KEY FOB
Currently the BES system comprises with SMART KEY FOB always.
The transmitter, receiver and antennas required for the communication between the fob and the vehicle will differ depending on functionalities and regional areas.
The RKE and SMART KEY functions are in separated documents. Refer to Smart key system for more detailed information about SMART KEY function.
Smart Key
The SMK manages all function related to:
"Start Stop Button (SSB) monitoring",
"Immobilizer communication" (with Engine Management System unit for immobilizer release),
"ESCL control",
"Authentication server" (Validity of Transponder and in case of Smart Key option Passive Fob authentication ),
"System consistency monitoring",
"System diagnosis",
Control of display message / warning buzzer .

The unit behaves as Master role in the whole system.
In case of SMART KEY application, for example “Passive Access”, “Passive Locking” and “Passive Authorization are integrated for ESCL/Terminal switching Operations”.
It collects information about vehicle status from other modules (vehicle speed, alarm status, driver door open...), read the inputs (e.g. SSB, Lock Button and PARK position Switch), controls the outputs (e.g. exterior and interior antennas), and communicates with others devices via the CAN network as well as a single line interfaces.
The diagnosis and learning of the components of the BES System are also handled by the SMK.
Transponder

External Receiver(SRX)

The data transmitted by the RKE or Smart key Fob is received by an external RF receiver called as SRX. This receiver will be same as that one for the SMK applications, with respect to electronics, housing, connector and software.
This receiver is connected to the SMK via a serial communication line.
Terminal And Starter Relays
Relays will be used to switch the terminals ACC / IGN1 / IGN2. Those normally-open relays will be driven by the SMK unit and located either in the passenger or engine compartment depending on the vehicle architecture.
Only one relay coil is connected to the terminal outputs of the SMK unit.
Those relays should integrate a resistor connected in parallel to the coil in order to reduce the transients during commutation.
Start/Stop Button(SSB)
A single stage push button is used for the driver to operate the vehicle. Pressing this button allows:
To activate the power modes ‘Off’, ’Accessory’, ‘Ignition’ and 'Start' by switching the corresponding terminals
To start the engine
To stop the engine
The contact will be insured by a micro-switch and a backlighting is provided to highlight the marking of the button whenever necessary.
Two (2) LED colors are located in the center of the button to display of the status of the system. Another illumination LED is also integrated into the SSB for the lighting of the "Engine Start/Stop" characters.

Electronic Steering Column Lock (ESCL)
The ESCL is needed to lock the steering column in order to prevent unauthorized usage of the vehicle. In order to achieve the required safety integrity level, the ESCL is controlled and monitored by the SMK. Such redundant architecture guarantees that the ESCL motor is supplied only during locking/unlocking operation and that it is disconnected from the battery and ground lines otherwise to avoid unexpected operation while the vehicle is in motion.
Data are exchanged between the ESCL and SMK through an encrypted serial communication interface.

BES System State Chart
System STATES in LEARNT MODE
In learnt mode, the BES System can be set in 6 different states, depending on the status of the terminals, ESCL and Engine status:
System State
Terminal Status
ESCL Status
Engine status
1. OFF - Locked
OFF
Locked
Stopped
2. OFF - Unlocked
OFF
Unlocked
Stopped
3. ACC
ACC
Unlocked
Stopped
4. IGN
IGN1, IGN2, ACC
Unlocked
Stopped
5. Start
IGN1, Start
Unlocked
Cranking
6. IGN - Engine
IGN1, IGN2, ACC
Unlocked
Running
(means "self-running")

Referring to the terminals, the system states described in the table above are same as those one found in a system based on a mechanical ignition switch. The one of distinction with Mechanical-Ignition-Switch based system is that the BES system allows specific transition from [OFF] to [START] without going through [ACC] and [IGN] states.
System STATES IN VIRGIN MODE
The BES System can be set in 5 different states (OFF LOCKED is not available in virgin mode), depending on the status of the terminals, ESCL and Engine status:
System State
Terminal Status
ESCL Status
Engine status
1. OFF - UNLOCKED
OFF
Unlocked
Stopped
2. ACC
ACC
Unlocked
Stopped
3. IGN
IGN1, IGN2, ACC
Unlocked
Stopped
4. Start
IGN1, START with special pattern of activation see Chap 6.2.1 for details
Unlocked
Cranking
5. IGN - Engine
IGN1, IGN2, ACC
Unlocked
Running
(means "self-running")

Referring to the terminals, the system states described in the table above are same as those one found in a system based on a mechanical ignition switch. The one of distinction with Mechanical-Ignition-Switch based system is that the BES system allows specific transition from [OFF] to [START] without going through [ACC] and [IGN] states.
Schematic Diagrams
Circuit Diagram ...

Start/Stop Button Components and Components Location
Component ...

See also:

Keep your garage dry
Do not park your vehicle in a damp, poorly ventilated garage. This creates a favorable environment for corrosion. This is particularly true if you wash your vehicle in the garage or drive it into t ...

Description and Operation
Description Emissions Control System consists of three major systems. • Crankcase Emission Control System prevents blow-by gas from releasing into the atmosphere. This system recycles gas ba ...

Engine Coolant Temperature Sensor (ECTS) Repair procedures
Inspection 1. Turn the ignition switch OFF. 2. Disconnect the ECTS connector. 3. Remove the ECTS (Refer to "Removal"). 4. After immersing the thermistor of the sensor into engine coola ...

Categories

Hyundai Azera Manuals


© 2011-2024 Copyright www.hgmanual.com